

Introduction to Research Efforts on Robot AI for Elderly-Care

Talk @ CBNU

2020.10.15

Minsu Jang (minsu@etri.re.kr)

Human-Robot Interaction Research Lab

Electronics and Telecommunications Research Institute

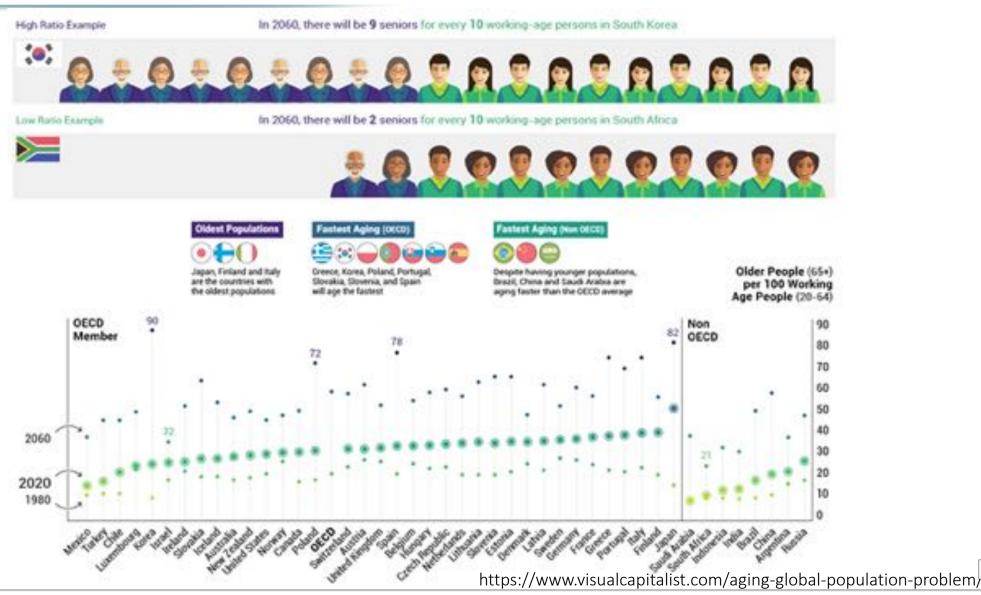
Outline

- Motivation and Challenges
- Domain AI for Elderly-Care
 - Daily Activity Detection
 - Human Detection and Tracking
 - Human Attributes Recognition
 - Object Instance Detection
 - Elderly Voice Recognition

Robot Social AI

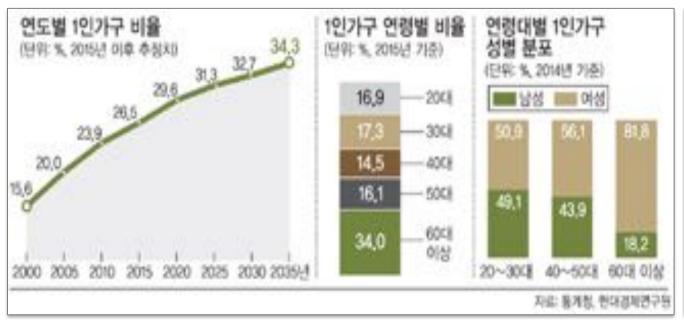
- Co-Speech Gesture Generation
- Non-Verbal Interaction Behavior Generation

Summary



Motivation and Challenges

Aging society is a global problem



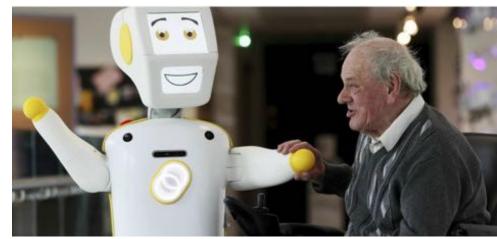
4

The problem of aging population in Korea

- Population of the elderly over 65 years of age: $13.8\%('19) \rightarrow 20\%('25)$
- More than half of the elderly will live alone in 2030

5

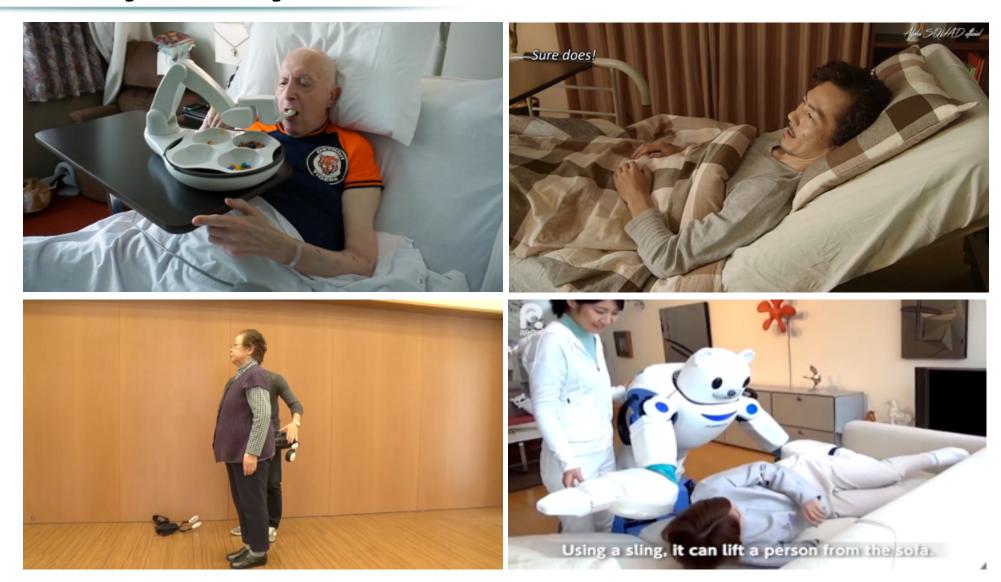
Elderly people are fragile


- Social isolation: more than 20% of the elderly
- •Mental health problems: Loneliness, Psychological Distress, Depression
- Mental health and physical health have an impact on each other
 - -Depression → Heart Disease

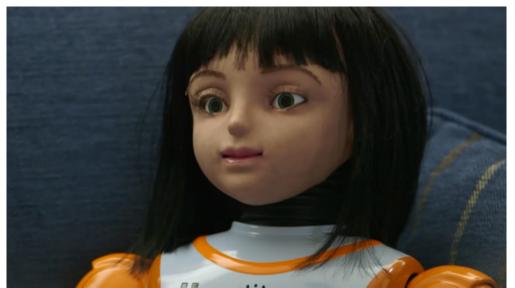
Assistive robots for elderly-care

https://www.mdpi.com/2079-9292/9/2/367/htm

https://www.mdpi.com/2079-9292/9/2/367/htm


http://www.seoulilbo.com/news/articleView.html?idxno=379516

http://shorturl.at/qER39


PARs: Physically Assistive Robots

8

SARs: Socially Assistive Robots

9

We are trying to realize...

SARs (Socially Assistive Robots)

Human-aware Perception
Understanding & Empathy

"You are dressed up today. Fedora hat looks great on you."

Human-like Behaviors
Emotional & Sympathy

"I am very sorry to hear that..."

Challenges of Elderly Domain: STT

Subject	Non-elderly	Elderly	Difference
Women	,	40.3% (32 speakers)	
Men	11.7% (25 speakers)	61.3% (11 speakers)	+49.6%
Average	11.0%	45.7%	34.7%
Standard deviation	6.4%	16.8%	10.4%

STT Performance on Non-Elderly vs Elderly Speech

- Imprecise in consonant pronunciation
- Tremors
- Slower Articulation

Vacher, M., Aman, F., Rossato, S. and Portet, F., 2015, August. Development of automatic speech recognition techniques for elderly home support: Applications and challenges. In International Conference on Human Aspects of IT for the Aged Population (pp. 341-353). Springer, Cham.

11

Challenges of Elderly Domain: Our Experiments

Speech Recognition

Table 3. Speech Recognition Result per Age Group

Age Group	Number of Subjects	WER Average ± SD (%)	p value when compared to 25-50 group
25-50	5	16.25 ± 6.42	-
50-64	6	17.89 ± 7.72	0.2607
65-69	6	17.45 ± 8.92	0.4513
70-74	6	18.12 ± 12.33	0.3537
78+	8	20.45 ± 10.23	0.0291*

• Data: 12 hours of speech

• Speech Recognizer: Google Cloud Speech

12

Challenges of Elderly Domain: Our Experiments

Facial Expression & Emotion Recognition (with Affdex^[1])

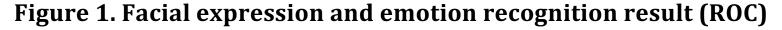
Older Adults

Younger Adults

attention	eye closure	smile	jaw drop	lip stretch
0.91	0.83	0.95	0.82	0.72
brow	eye widen	cheek	lip corner	mouth
furrow		raise	depressor	open
0.92	0.81	0.83	0.73	0.94
brow raise	lid tighten	chin raise	lip press	upper lip raise
0.89	0.82	0.73	0.77	0.75
inner brow raise	nose wrinkle	dimpler	lip pucker	smirk
0.94	0.96	0.84	0.78	0.82

0.92	0.81	0.83	0.73	0.94
brow raise	lid tighten	chin raise	lip press	upper lip
			• •	raise
0.89	0.82	0.73	0.77	0.75
inner brow	nose	dimpler	lip pucker	smirk
raise	wrinkle	diripici	iip packer	SITIIIK
0.94	0.96	0.84	0.78	0.82
anger	contempt	disgust	fear	joy
0.89	0.76	0.82	0.62	0.82

valence


0.88

arousal

0.75

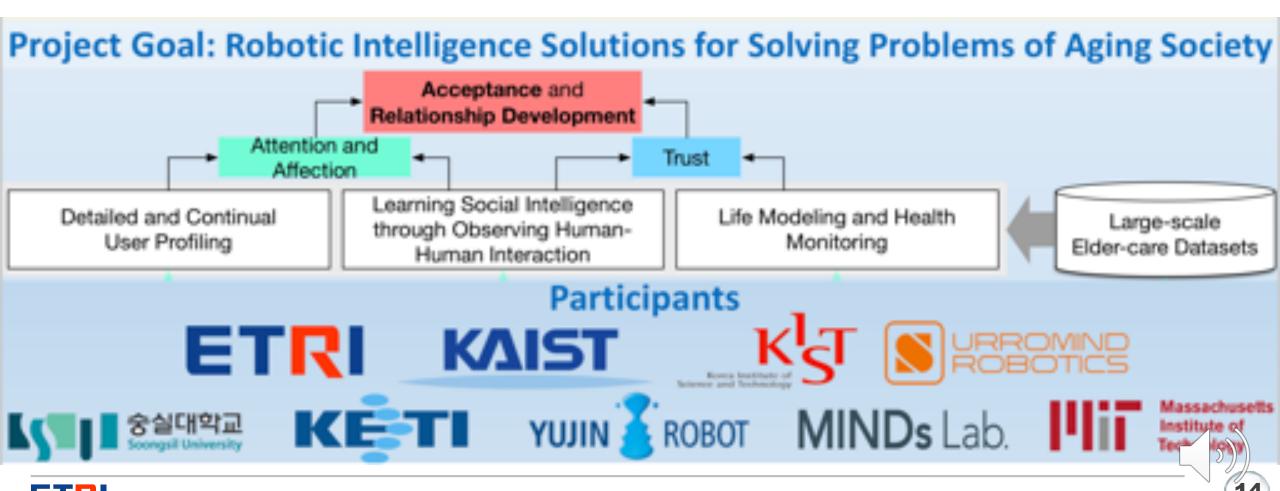
attention	eye closure	smile	jaw drop	lip stretch
0.91	0.85	0.95	0.88	0.69
brow	eye widen	cheek	lip corner	mouth
furrow 0.96	0.86	raise 0.85	depressor 0.82	open 0.92
brow raise	lid tighten	chin raise	lip press	upper lip raise
0.94	0.79	0.78	0.77	0.82
inner brow raise	nose wrinkle	dimpler	lip pucker	smirk
0.94	0.92	1.00	0.82	0.92

			_	
anger	contempt	disgust	fear	joy
0.88	0.72	0.82	0.69	0.88
aadaaaa		volence	orousel	
sadness	surprise	valence	arousal	
0.72	0.93	0.90	0.83	

sadness

0.72

surprise


0.91

1.0

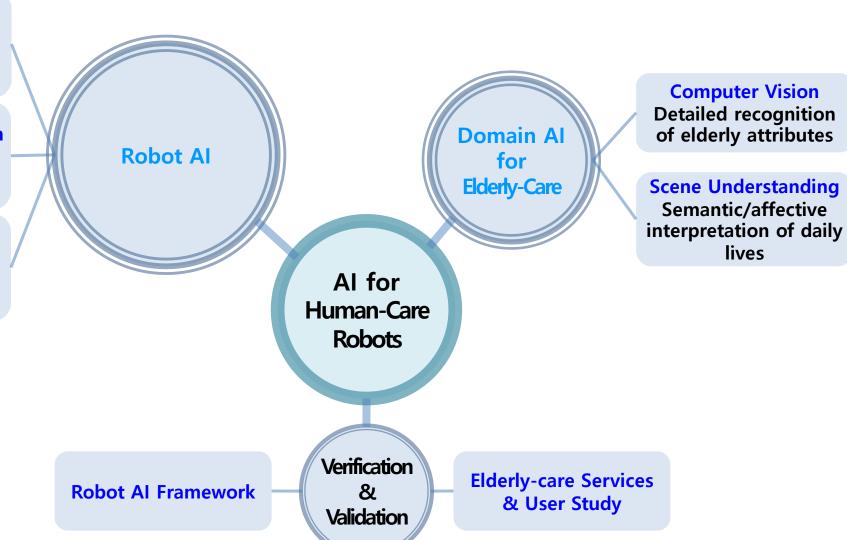
0.0

AIR Project

"Development of Human-Care Robot Technology for Aging Society" (2017~2021, MSIT)

Research Issues

Robot Vision

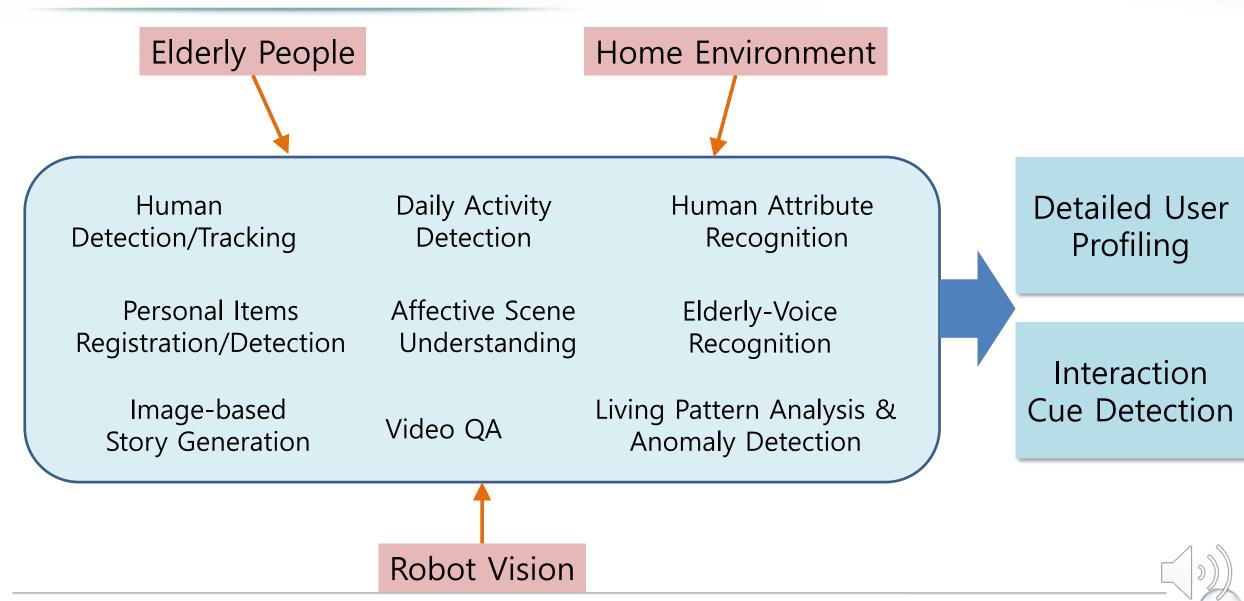

Ego-centric moving camera-based vision

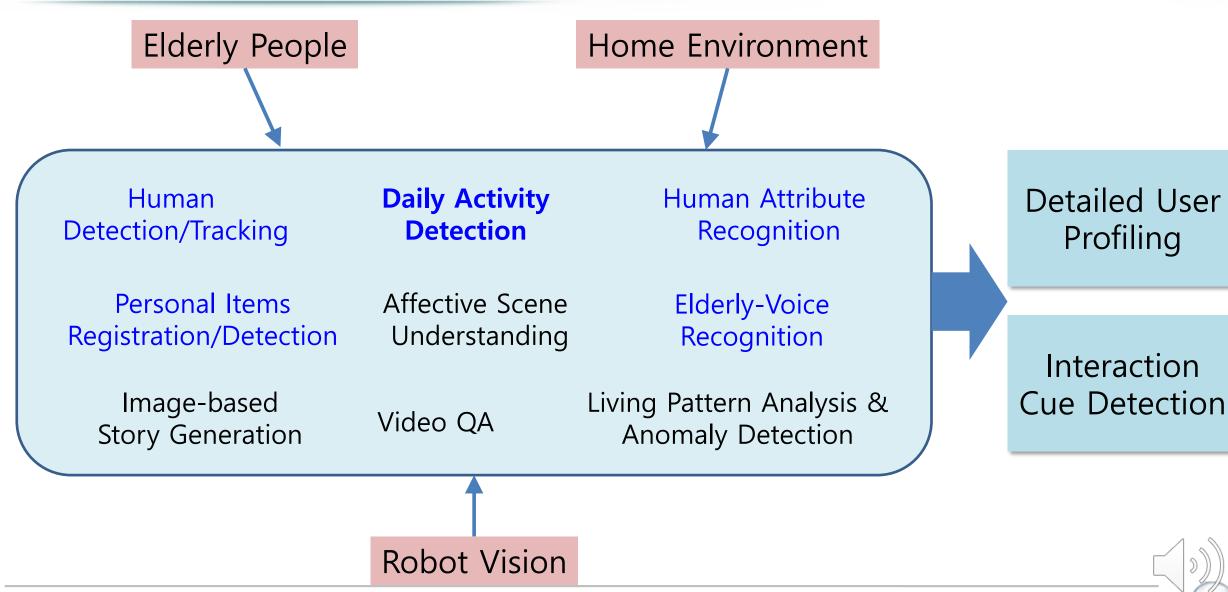
Sim-to-Real Adaptation

Synthetic data for real applications

Robot Social Al

Learn to generate context-proper social behaviors



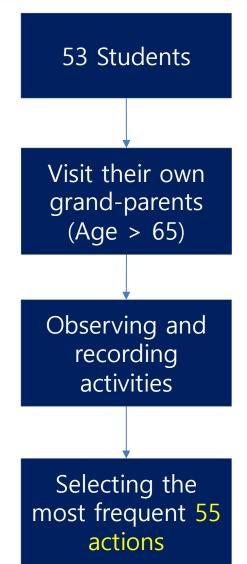

Domain AI for Elderly-Care

Domain AI for Elderly-Care

Domain AI for Elderly-Care

Daily Activity Detection for the Elderly

• Hypothesis: Motions of elderly people are very different from those of young adults.



We need data directly from elderly people.

Elderly Activity Dataset: What to collect?

	Goal	Select most frequent activities of older people		
Method	How	Observing one day of older people		
ivietiloa	Participants	53 Elderly People (age > 65)		
Dates 2017-06-15		2017-06-15 ~ 2017-07-05		
	No. activities	245		
Result	Frequent activities	 Watching TV Meal-related activities (eating, preparing foods, washing dishes) Defecation (using toilet) Phone call Taking medications Washing face and brushing teeth Wearing and taking off clothes 		
	Frequent objects	Mobile phone, Remote, Eyeglasses, Beds, Medicine, Curis		

55 daily activities of the elderly

Category	ID	Activities			
	1	eating food with a fork			
	2	pouring water into a cup			
	3	taking medicine			
	4	drinking water			
Foods	5	putting food in the fridge/taking food from the fridge			
	6	trimming vegetables			
	7	peeling fruit			
	8	using a gas stove			
	9	cutting vegetable on the cutting board			
	10	brushing teeth			
	11	washing hands			
	12	washing face			
Clothing	13	wiping face with a towel			
	14	putting on cosmetics			
	15	putting on lipstick			
	16	brushing hair			
	17	blow drying hair			
	18	putting on a jacket			
	19	taking off a jacket			
	20	putting on/taking off shoes			
	21	putting on/taking off glasses			
	22	washing the dishes			
	23	vacuumming the floor			
	24	scrubbing the floor with a rag			
Housework	25	wipping off the dinning table			
Housework	26	rubbing up furniture			
	27	spreading bedding/folding bedding			
	28	washing a towel by hands			
	29	hanging out laundry			

Category	ID	Activities			
	30	looking around for something			
	31	using a remote control			
	32	reading a book			
	33	reading a newspaper			
Leisure	34	handwriting			
	35	talking on the phone			
	36	playing with a mobile phone			
	37	using a computer			
	38	smoking			
	39	clapping			
	40	rubbing face with hands			
Health	41	doing freehand exercise			
	42	doing neck roll exercise			
	43	massaging a shoulder oneself			
	44	taking a bow			
Interpersonal	45	talking to each other			
Communication	46	handshaking			
Communication	47	hugging each other			
	48	fighting each other			
Human-Robot	49	waving a hand			
Interaction	50	flapping a hand up and down (beckoning)			
interaction	51	pointing with a finger			
	52	opening the door and walking in			
Etc	53	fallen on the floor			
Lic	54	sitting up/standing up			
	55	lying down			

Considerations on Data Acquisition

- Elderly Participants
- Real-world environments, Multi-modal, Robot vision

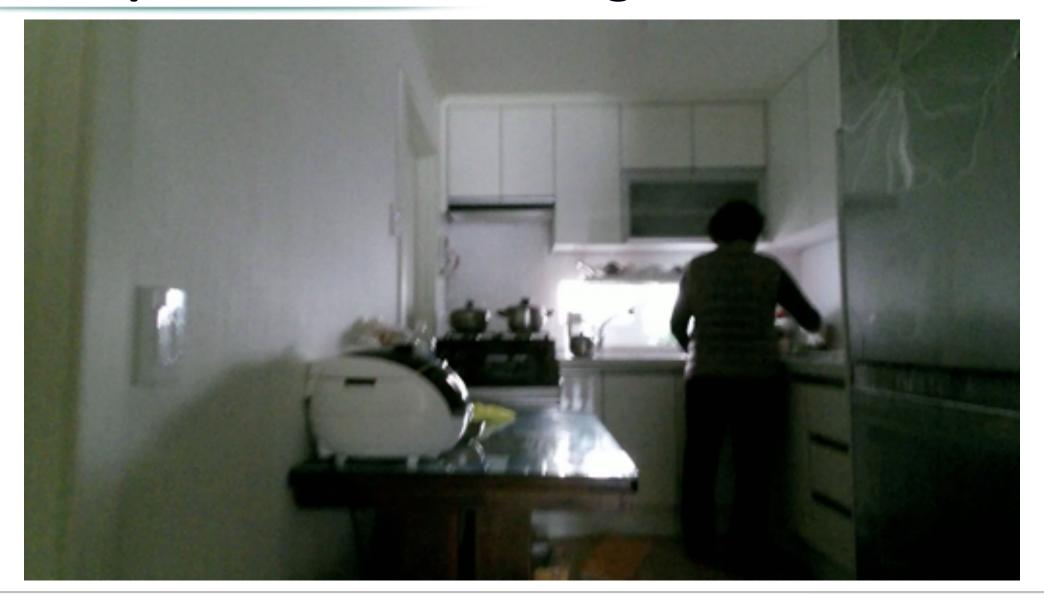
Multi-Camera System in operation

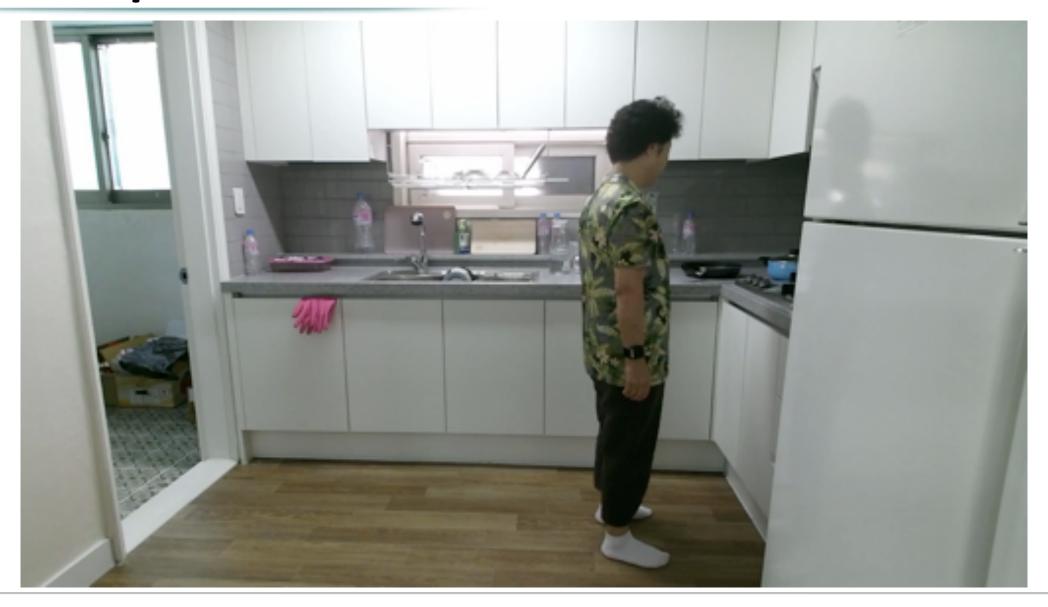
Environments: Living Labs

- Real home where elderly participants are living
 - We could capture real life situations without intervention.
 - Slight interventions have been tried though.

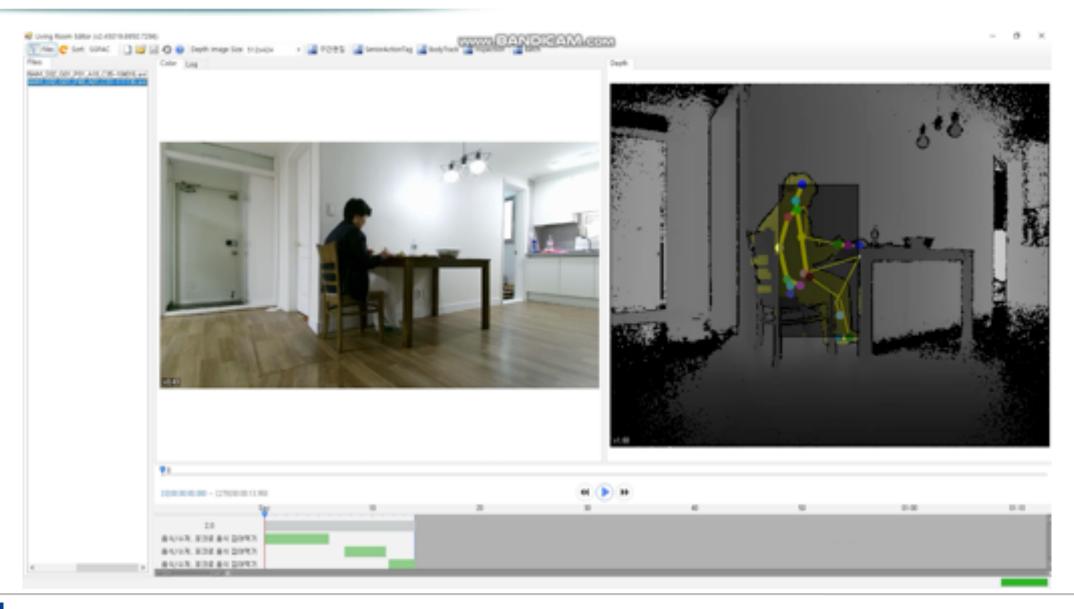
Environments: Apartment Testbed

- An apartment house for data collection and experiments
 - Daily activities intentionally performed by participants
 - Multiple RGB-D cameras for 8 different viewpoints





Data Acquisition at the Livings Labs



Data Acquisition at the Testbed


Annotations and Validation

ETRI-Activity3D Dataset

- Data acquisition environment: Test-bed
- Data format: RGB-DS video clips
- Participants: 50 older adults + 50 young adults
- Samples: 112,620 trimmed videos of 55 activities

ETRI-Activity3D is...

• The first large-scale multi-modal elderly activity dataset

Datasets	#Samples	#Sub	#Act	Modalities
RGBD-HuDaAct [3]	1,189	30	13	RGBD
MSRDailyActivity3D [4]	320	10	16	RGBDS
Act4 ² [5]	6,844	24	14	RGBD
CAD-120 [6]	120	4	10+10	RGBDS
Office Activity [7]	1,180	10	20	RGBD
UWA3D Multiview II [8]	1,075	10	30	RGBDS
NTU RGB+D [9]	56,880	40	60	RGBDSI
NTU RGB+D 120 [10]	114,480	106	120	RGBDSI
Toyota Smarthome [11]	16,129	18	31	RGBDS
ETRI-Activity3D	112,620	100	55	RGBDS

ETRI-Activity3D Availability

ETRI-Activity3D: A Large-Scale RGB-D Dataset for Robots to Recognize Daily Activities of the Elderly

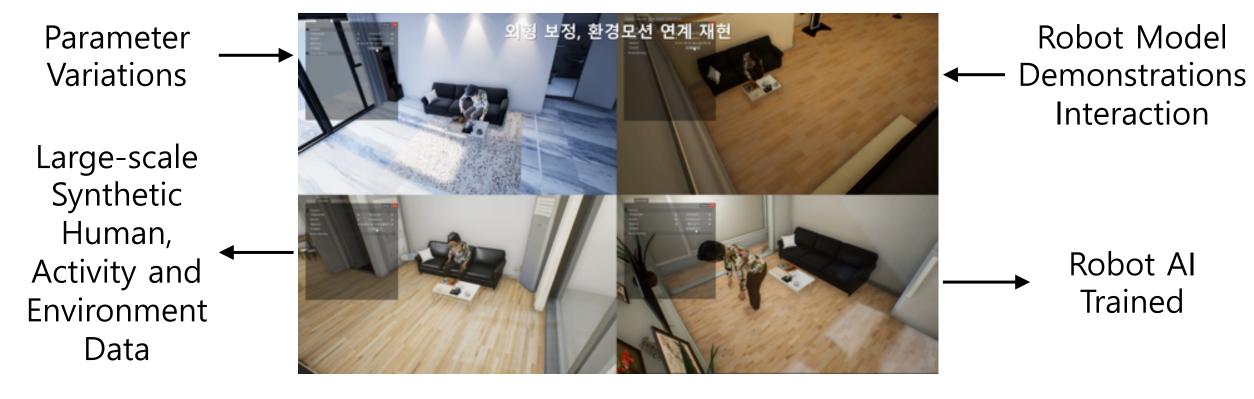
Jinhyeok Jang, Dohyung Kim*, Cheonshu Park, Minsu Jang, Jaeyeon Lee, Jaehong Kim

Jang, J., Kim, D., Park, C., Jang, M., Lee, J., & Kim, ETRI-Activity3D: A Large-Scale RGB-D Dataset for Robots to Recognize Daily Activities of the Elderly. IROS 2020.

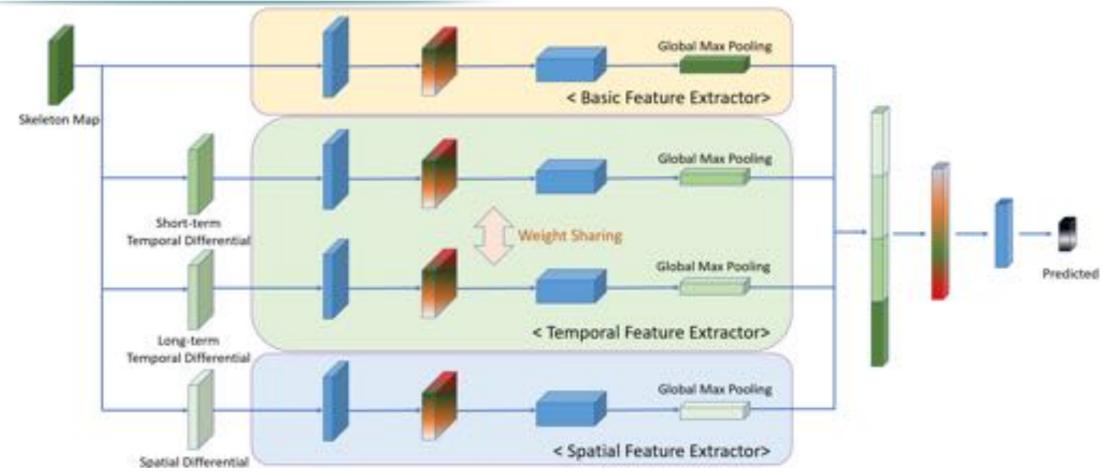
Available at: https://ai4robot.github.io/etri-activity3d

ETRI-Activity3D extension coming this year...

- Data acquisition environment: Living Lab
- Data format: RGB-DS video clips
- Participants: 30 living labs
- Samples: 150 hours of untrimmed videos



Synthetic Dataset Generation Platform


Virtual Home Robot Environment

You can generate infinite variations and scenarios

Elderly Daily Activity Recognition: FSA-CNN

- Jang, Jinhyeok, Hyunjoong Cho, Jaehong Kim, Jaeyeon Lee, and Seungjoon Yang. "Deep neural networks with a set of nodewise varying activation functions." Neural Networks (2020)
- Jang, J., Kim, D., Park, C., Jang, M., Lee, J., & Kim. "ETRI-Activity3D: A Large-Scale RGB-D Dataset for Robots to Recognize Daily Activities of the Elderly." IROS 2020. (2020) (accepted)

Performance of FSA-CNN

Method	NTU RGB+D		ETRI- Activity3D
	CS (%)	CV (%)	CS (%)
IndRNN [18]	81.8	88.0	73.9
Beyond Joint [17]	79.5	87.6	79.1
SK-CNN [14]	83.2	89.3	83.6
ST-GCN [20]	81.5	88.3	86.8
Motif ST-GCN [21]	84.2	90.2	89.9
Ensem-NN [16]	85.1	91.3	83.0
MANs [19]	83.0	90.7	82.4
HCN [15]	86.5	91.1	88.0
FSA-CNN	88.1	92.2	90.6

Activities of the Elderly vs. Young

	Average activity length (sec)	Motion magnitude per time
Elderly	13.35	16.79
Young	9.45	20.28

Test data Training data	TestData _{elderly}	TestData _{young}
Training Data _{elderly}	87.69	68.99
TrainingRData _{young}	74.87	85.00
TrainingRData _{mixed}	84.78	82.05

"Is it plausible that activity patterns of elderly people are very different from those of young adults?" "Yes, maybe..."

Speech Recognition for the Elderly

- A large-scale 400 hours of Korean speech dataset
- Collected entirely from older adults
- Dialog Speech + Read Speech

Data Collection: Dialog Speech

- Conversations between a visiting social worker and an elderly living alone
- Recordings made with smartphones
 - Varying audio quality
 - Frequent environmental noises

Dialog Speech Data: Original Raw Data

• 873 hours, 3,381 participants, 12 regions

Region(R)	No. Participants	Len. (hrs)
Seoul-si(SE)	620	122
Busan-si(PS)	242	90
Daegu-si(DG)	202	33
Gwangju-si(GJ)	179	63
Daejeon-si(DJ)	275	66
Ulsan-si(WS)	80	28
Goyang-si(GG)	335	69
Gangwon-do(GW)	178	45
Chungcheongbuk-do(CB)	252	92
Chungcheongnam-do(CN)	317	46
Jeollanam-do(JN)	323	103
Gyeongsangbuk-do(GB)	378	116
Total	3,381	873

39

Dialog Speech Data: Post-Processing

- Quality Assurance
 - Speech segments inaudible or incomprehensible by human listeners were removed
- Screening
 - Every dialog including sensitive personal information were removed
- Transcription
 - An audio file was transcribed into a text file

Dialog Speech Data: Participants

• 1,170 participants, 79 years old in average

Region(R)	No. Participants	Age (μ/σ)
Seoul-si(SE)	251(F:210,M:41)	78.98/5.13
Daegu-si(DG)	108(F:95,M:13)	80.33/6.08
Gyoungki-do(GG)	110(F:83,M:27)	80.17/5.41
Chungcheongnam-do(CN)	6(F:6,M:0)	77.00/3.69
Jeollanam-do(JN)	70(F:56,M:14)	80.76/4.90
Busan-si(PS)	160(F:137,M:23)	78.70/5.51
Daejeon-si(DJ)	96(F:72,M:24)	78.81/5.24
Gangwon-do(GW)	109(F:94,M:15)	80.07/5.50
Gyeongsangbuk-do(GB)	98(F:95,M:3)	80.87/4.48
Gwangju-si(GJ)	87(F:70,M:17)	79.39/5.77
Chungcheongbuk-do(CB)	17(F:17,M:0)	80.47/5.51
Ulsan-si(WS)	58(F:49,M:9)	76.97/4.48
Total	1,170(F:984,M:186)	79.47/5.37

Dialog Speech Data: Statistics

• 300 hours, 15.4 minutes per a session in average

Region(R)	Len.(secs)	Len. (μ/σ)
Seoul-si(SE)	151,010	601.63/239.83
Daegu-si(DG)	60,740	562.42/228.14
Gyoungki-do(GG)	107,935	981.23/357.19
Chungcheongnam-do(CN)	5,193	865.62/293.98
Jeollanam-do(JN)	81,767	1,168.10/294.85
Busan-si(PS)	200,207	1,251.30/255.85
Gangwon-do(GW)	95,420	875.42/158.18
Daejeon-si(DJ)	123,138	1,282.70/293.83
Gyeongsangbuk-do(GB)	71,175	726.28/308.80
Gwangju-si(GJ)	92,699	1,065.52/276.53
Chungcheongbuk-do(CB)	20,135	1,184.41/309.54
Ulsan-si(WS)	70,754	1,219.90/254.43
Total	1,080,179	923.23/380.17

3))

Dialog Speech Data: Data Formats

Audio Data

Property	Value
Format.	PCM
Format Settings	Little/Signed
Codec ID	1
Bit Rate Mode	Constant
Bit Rate.	256
Channel(s)	1
Sampling Rate	16 kHz
Bit Depth	16 bits
	<u> </u>

Data Collection: Read Speech

- Pre-selected sentences were read by older adults
- Recordings made with a dedicated tablet app with on-line validation
 - Good quality overall
 - But, frequent mistakes by participants

Read Speech Data: Statistics

- 104 participants, 5 regions
- 111,814 sentences, 100 hours

Region(G)	No. Persons	No. Sent.	Len. (μ/σ)
Gyeongsangnam-do(GB)	20	22,575	3.18/1.38
Seoul-si(SE)	18	19,220	3.31/1.49
Jeollanam-do(JN)	21	21,393	3.36/1.52
Daegu-si(DG)	25	26,950	3.60/1.87
Gangwon-do(GW)	20	21,676	2.73/1.12
Total	104	111,814	3.25/1.54

Dialog Speech Data: Data Formats

Audio Data

Property	Value
Format.	PCM
Format Settings	Little/Signed
Codec ID	1
Bit Rate Mode	Constant
Bit Rate.	705.6 kb/s
Channel(s)	1
Sampling Rate	44.1 kHz
Bit Depth	16 bits

STT Performance with VOTE400

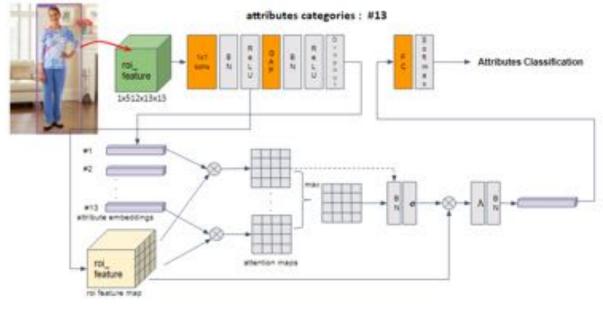
Tested with MINDs Lab's Baseline LSTM-based STT engine

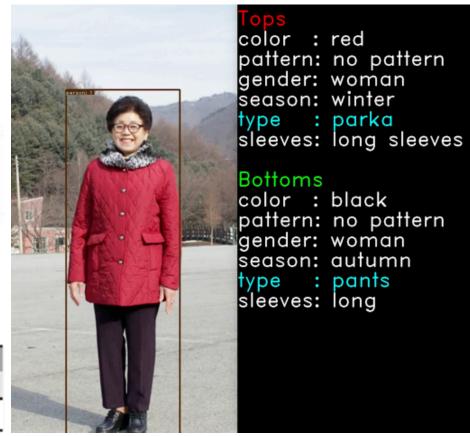
Fine-tuning with VOTE400 improves performance

		<u> </u>	
Region	Gender	M(%)	G(%)
Seoul	Male	90	90
Seoul	Female	90	80
Gangwon	Male	80	90
Gangwon	Female	90	80
Daegu	Male	7 0	80
Daegu	Female	90	80
Milyang	Male	90	80
Milyang	Female	80	80
Jeonnam	Male	70	50
Jeonnam	Female	80	60
Total		83	7 7

[♣] homepage: https://ai4robot.github.io/mindslab-etri-vote400/

Human Detection and Tracking

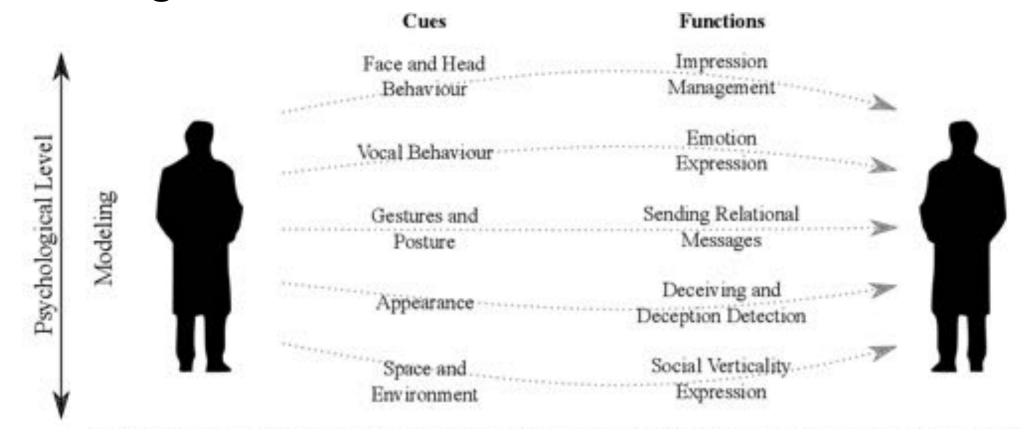

- Yolo + Online-learning for visual features in human ROIs
- Filtering out false human detections on reflective surfaces



Human Attribute Recognition

- Dataset: 35,000 elderly images with 80,000 ROIs
- 69 attributes

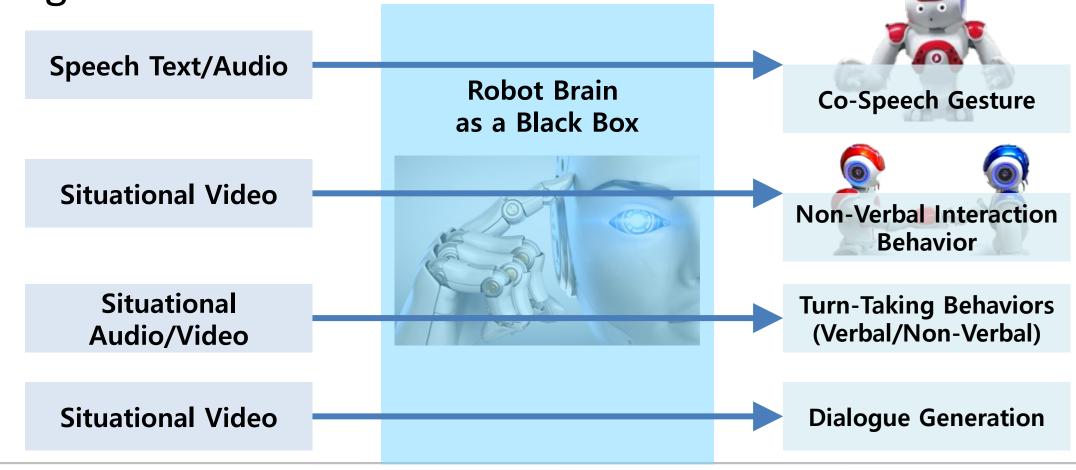
	Tops(상의)							Bot	toms(ㅎ	ት의)			
	color	pattern	gender	season	type	sleeves	color	pattern	gender	season	type	sleeves	leg_type
73.55	45.02	71.64	82.17	59.46	67.40	81.71	71.35	77.76	79.67	73.7	80.46	81.08	84.93


homapage: https://github.com/ai4r/Air-Clothing-MA

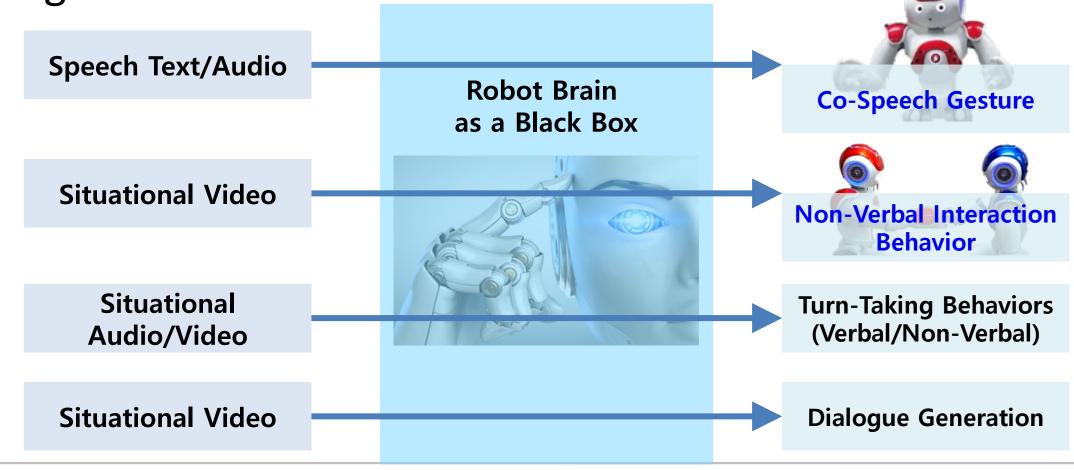
Robot Social Al

Social Intelligence

Social Cognition and Social Behaviors


for Robots... HOW?

End-to-End Robot Social Al


 Learning from Human-Human Interaction for Social Cognition and Behavior Generation

End-to-End Robot Social Al

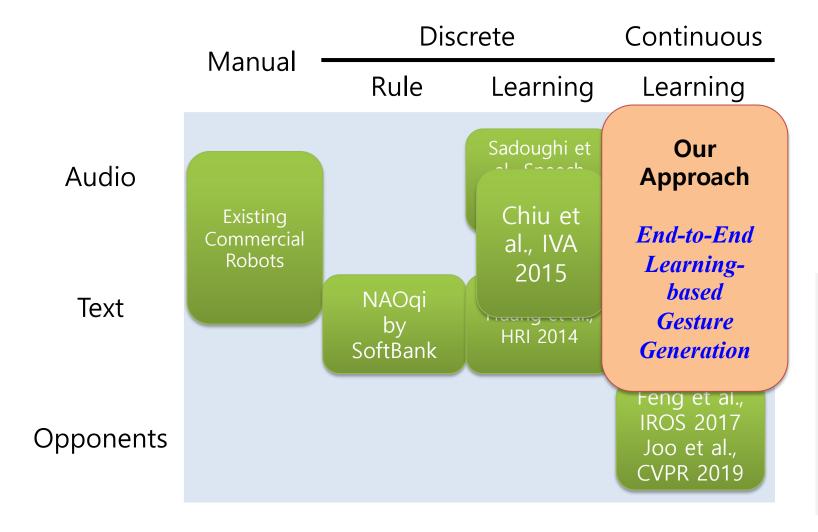
 Learning from Human-Human Interaction for Social Cognition and Behavior Generation

What are Co-Speech Gestures?

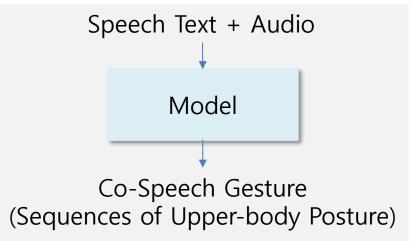
One of the key elements of social interaction

Evaluation of Social Interaction (ESI) Assessment¹

- Approaches, Gaze, Conversation flow, Gesture, Facial expression, ...
- More Attention², Help listeners comprehend³, Human likeness

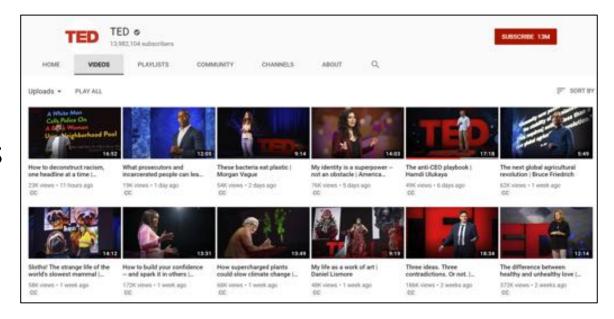

^[3] Cassell, J., McNeill, D. and McCullough, K.E., 1999. Speech-gesture mismatches: Evidence for one underlying representation of linguistic and nonlinguistic information. Pragmatics & cognition.

^[1] Fisher, A.G. and Griswold, L.A., 2010. Evaluation of social interaction (ESI). Fort Collins, CO.


^[2] Bremner, P., Pipe, A.G., Melhuish, C., Fraser, M. and Subramanian, S., 2011, October. The effects of robot-performed co-verbal gesture on listener behaviour. In 2011 11th IEEE-RAS International Conference on Humanoid Robots.

Co-Speech Gesture Generation Methods

Goal

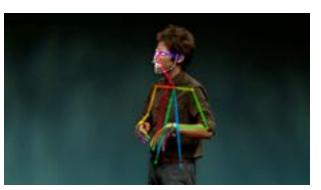

Generating natural and plausible co-speech gestures for multimodal speech context by end-to-end learning from in-the-wild videos

Data Acquisition

- TED Video Dataset
- First <u>large-scale</u> & <u>in-the-wild</u> dataset
- Why TED talks?
 - Large enough
 - Various speech content and speakers
 - Expect that the speakers use proper hand gestures
 - Favorable for automation of data collection and annotation

Automated Data Acquisition Pipeline

Automated Process


Download video and transcripts

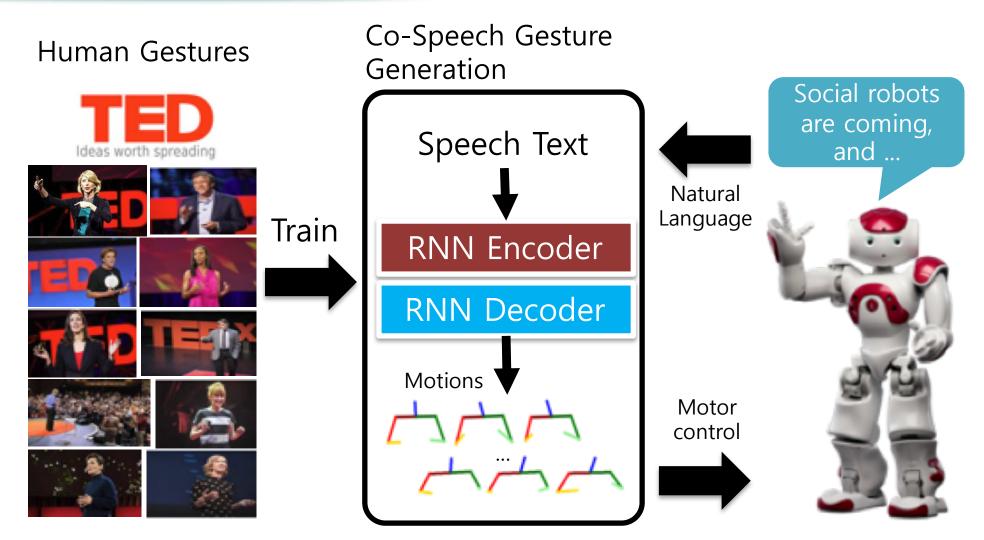
Extract 2D poses

Shot filtering

Word-level transcript synchronization

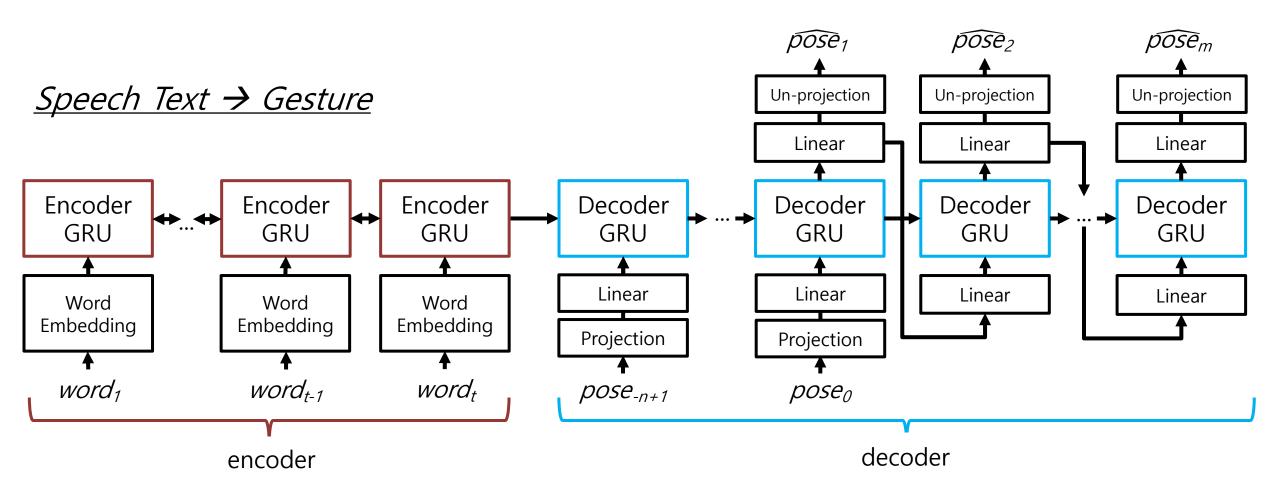
Make training samples

Excluded samples


Youtube TED Gesture Dataset

Number of videos	1,766
Average length of videos	12.7 min
Shots of interest	35,685 (20.2 per video on avg.)
Ratio of shots of interest	25% (35,685 / 144,302)
Total length of shots of interest	106.1 h

• homepage: http://ai4robot.github.io/datasets


System Architecture

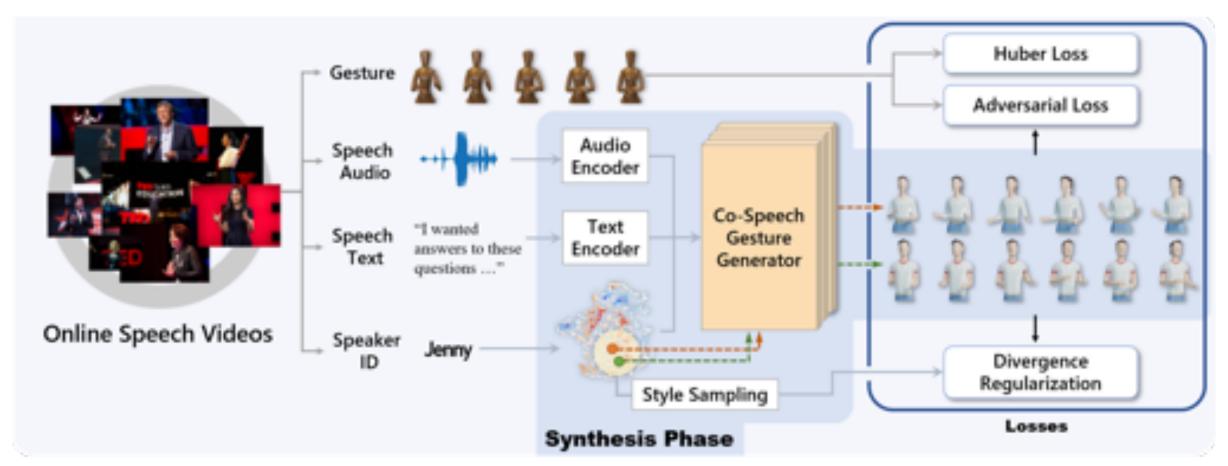
Yoon, Y. et al., Robots Learn Social Skills: End-to-End Learning of Co-Speech Gesture Generation for Humanoid Robots, in the Proc. of The International Conference in Robotics and Automation (ICRA 2019).

Text-to-Gesture Generation Model ('19)

Co-Speech Gesture Generation Demo ('19)

Robots Learn Social Skills: End-to-end Learning of Co-Speech Gesture Generation for Humanoid Robots

Youngwoo Yoon, Woo-Ri Ko, Minsu Jang, Jaeyeon Lee, Jaehong Kim, and Geehyuk Lee



Trimodal-based Co-Speech Gesture Generation

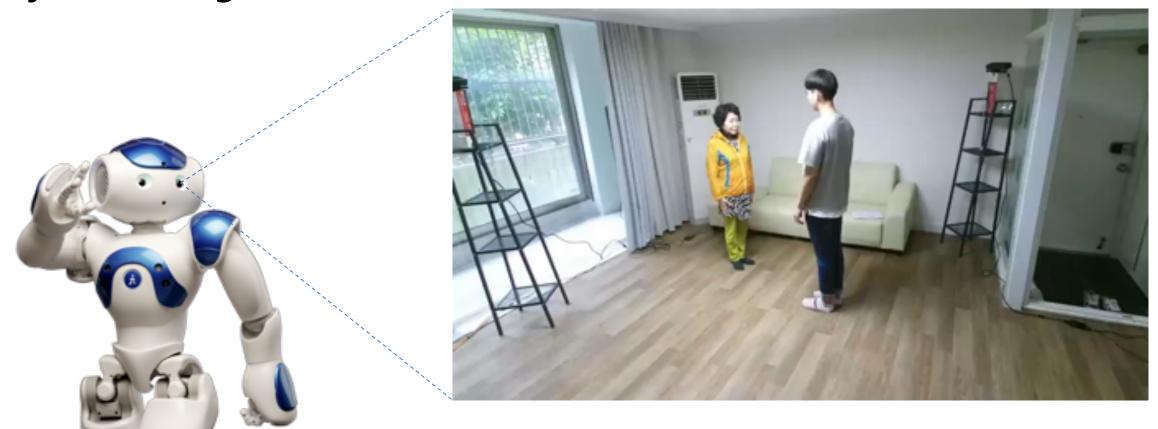
Speech Text + Speech Audio + Speaker ID → Gesture

Yoon et al., "Speech Gesture Generation from the Trimodal Context of Text, Audio, and Speaker Identity." SIGRAPH ASIA 2020 (accepted)

Co-Speech Gesture Generation Demo ('20)

SIGGRAPH ASIA 2020

Speech Gesture Generation from the Trimodal Context of Text, Audio, and Speaker Identity

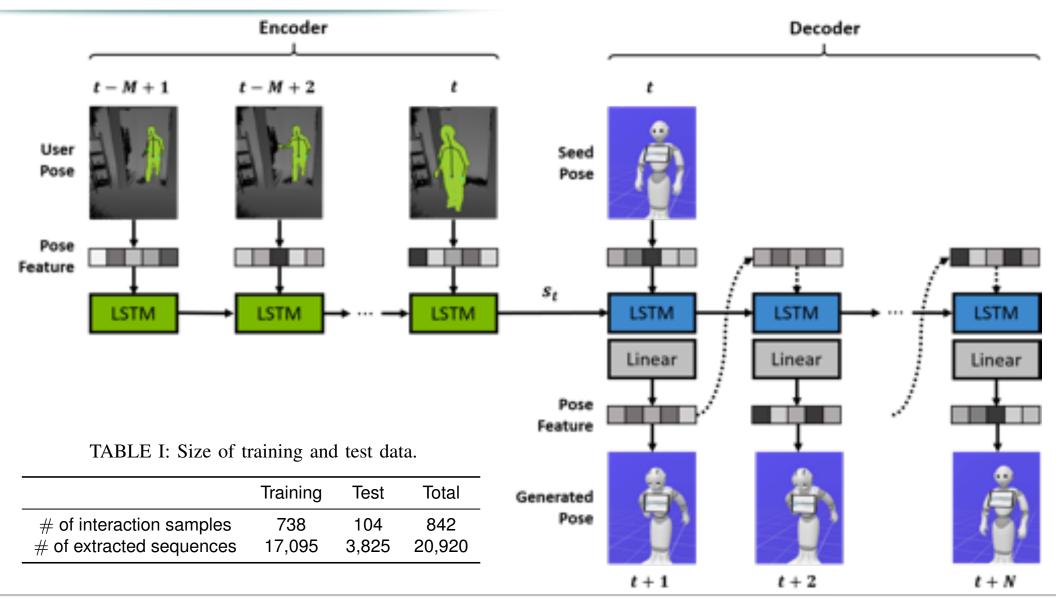

Youngwao Yoan, Bok Cha, Joo-Haeng Lee, Minsu Jang, Jaeyean Lee, Jaehang Kim, Geehyuk Lee

Act2Act: Non-Verbal Interaction Generation

Learning to decide when and how to perform which interaction behavior by observing human-human interactions

Act2Act Dataset

- Participants: 100 elderly people (age > 65)
- Data Format: RGBD-S/Robot Joint Angles Video Clips
- Samples: 7,500 sets (100 groups x 10 scenarios x 5 repetition x 3 views)



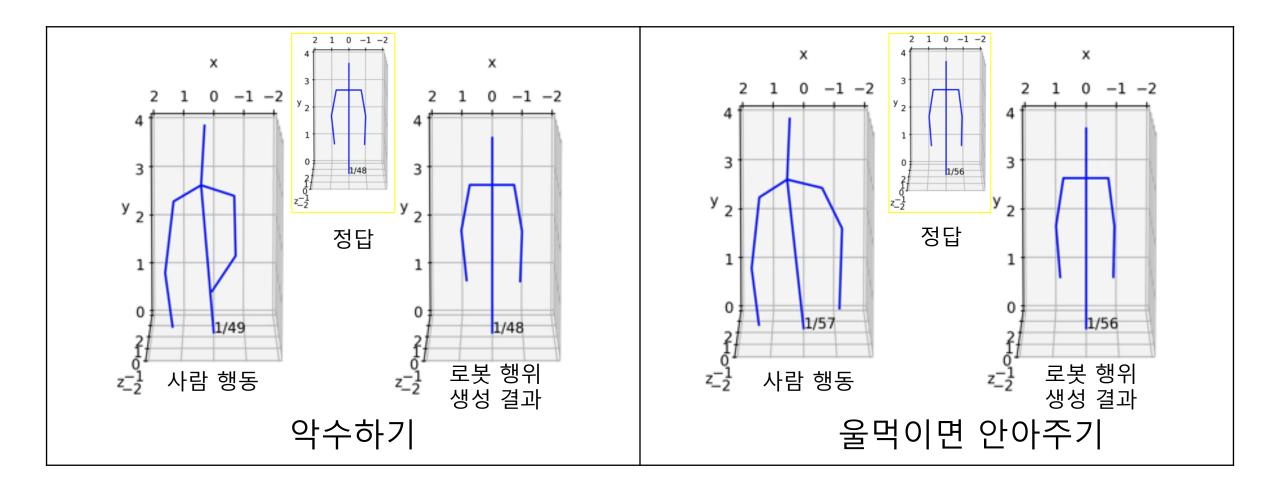
homepage: https://ai4robot.github.io/air-act2act/

Act2Act Generation Model

Act2Act Evaluation

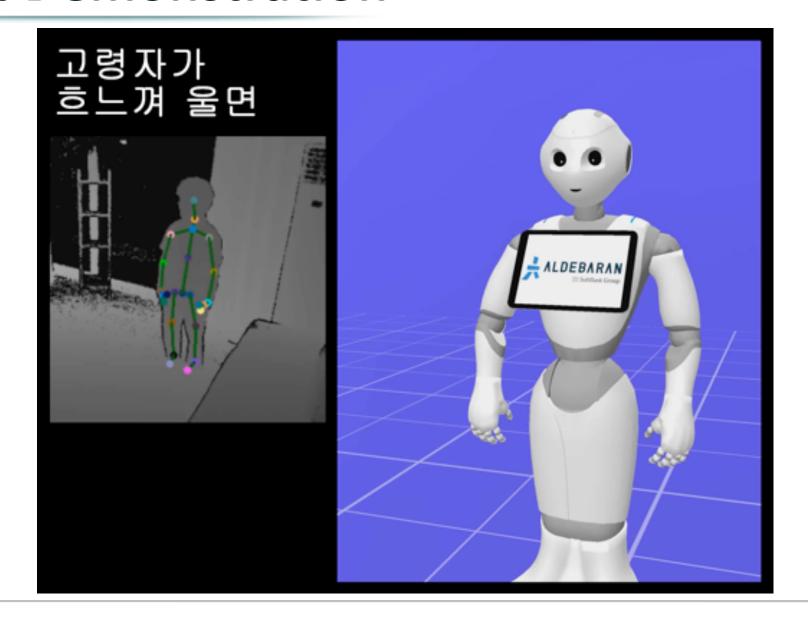
TABLE II: Accuracy of behavior generation. (GT: ground truth, 1: bowing to the user, 2: staring at the user for a command, 3: shaking hands with the user, 4: stretching hands to hug the user, 5: no to all)

Answer	1	2	3	4	5	Total
1	97.4	0.0	0.0	0.0	2.6	100%
2	0.0	85.1	0.0	0.0	14.9	100%
3	1.8	10.5	61.4	0.0	26.3	100%
4	0.0	0.0	0.0	71.9	28.1	100%


TABLE III: Behavior satisfaction.

Behavior	Satisfaction
1	4.1
2	3.9
3	2.9
4	3.1

Woo-Ri Ko, Jaeyeon Lee, Minsu Jang, Jaehong Kim, "End-To-End Learning of Social Behaviors for Humanoid Robots" SMC 2020



Act2Act Demonstration

Act2Act Demonstration

Summary

Final Words...

- We are trying to build AI models and systems for elderlycare robots.
- Domain specific AI that really works in the real-world needs a lot of domain specific data collected from the realworld; we are doing it.
- You can find our results at:

https://ai4robot.github.com

https://github.com/ai4r

Thank you!

Contact: minsu jang (minsu@etri.re.kr)

