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ABSTRACT

This paper introduces a research project code-named AIR aiming to
develop artificial intelligence technologies for human-care service
robots that can provide personalized socially assistive services for
elderly people. The core issues to solve with the project include
deep understanding of human attributes and their changes over
longer period of time, automated learning and generation of socially
intelligent multi-modal robot behaviors based on machine learning
methodologies, building large-scale multi-modal datasets in the
domain of elderly care, and integration of core technologies as a
scalable and extensible framework. The project spans 5 years from
2017, and its main results, including datasets, shall be open-sourced.
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1 INTRODUCTION

Problems of aging society are attracting ever increasing attention
in many countries as the elderly population is growing fast with
accompanied social cost getting quickly higher. In South Korea,
the number of older people in the ages greater than 65 reached 6.8
million in 2016 which is 13.6% of the country’s total population
[9]. It is estimated that more than 50% of them will live alone by
2030, with fragile mind and body. The purpose of AIR project is to
mitigate the problems around aging society by providing robot Al
technologies to help older people avoid getting isolated and lonely,
developing cognitive impairment and losing health.
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The technologies should be viable to continuously monitor long-
term changes in personal preferences, health conditions, daily activ-
ity patterns and social relationships to better understand the elderly
people in various aspects and make qualified reports to families
or dedicated care givers. Also, it should be possible to build social
robots with the technologies that can build emotional relationships
and share experiences with older people.

The flux of technical approaches in AIR to achieve the goals can
be summarized as follows:

e Detailed and Continual User Profiling: modeling per-
sonal profiles of older people based on video streams from
robots by detecting, tracking, recognizing biometrics, human
attributes, daily activities and owning objects, and under-
standing their long-term changes.

e Learning Social Intelligence through Observation: mod-
eling interaction dynamics by observing interpersonal com-
munications, imitating multi-modal human social skills, and
incrementally improving them through feedbacks from users.

o Life-Modeling and Health Monitoring: modeling pat-
terns of daily living and detecting abnormal situations.

¢ Building Large-Scale Elder-care Datasets: Capturing multi-
modal data from real-world living labs where older people
actually live, and augmenting them by generating synthetic
human and action data with a lot of parametric variations
in the virtual environment.

¢ Designing a Software Framework for Social HRI: Inte-
gration of perception, deliberation and multi-modal action
generation modules into a coherent system based on plausi-
ble cognitive theories.

In this project, we hypothesize that if robots succeed in estab-
lishing emotional and trusted relationship with users, it will im-
prove sustainability and efficacies of the caring services provided
by human-care roots to elderly people at home environments. Ac-
cording to Knapp’s relational development model, interpersonal
relationship reciprocally develops with the growth of knowledge
about each other [4], which we suppose is also true for human-robot
relationship development. User profiling is the process of gradually
accumulating knowledge about a user’s preferences and activities.
With recent advances of computer vision technologies, we aim to
recognize face, gender, facial expressions as well as more than 14
kinds of human attributes including clothing properties like colors,
styles, patterns, accessories and facial make-up, 55 kinds of daily
activities and more than 20 object instances. As such, user profil-
ing in AIR contributes to understanding an elder user to the level
of very small details, and provides multi-faceted cues for service
personalization [3].
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Figure 1: Subsystems of the AIR framework
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Social intelligence modeling makes a robot automatically per-
form multi-modal communicative behaviors in a social and affective
manner, with which elder users can communicate more effortlessly
with robots. In our framework, social behaviors are not planned
but generated according to end-to-end models that are trained with
human-human social interaction data to map multi-modal input
data to robot joint control sequences, which is pioneered in recent
research efforts based on deep learning [5, 7]. This approach can
improve responsiveness and adaptiveness of social behaviors and
enables nuanced expressions upon variety of context changes.

Developing these wide variety of perceptual and generative tech-
nologies using recent Al techniques requires large-scale training
data. Collecting datasets from elderly people is not feasible due to
problems regarding ethics, safety and efforts. We plan to implement
several living labs and collect real-life multi-modal data continu-
ously throughout the whole project years, which will allow us to
build large-scale training datasets in the domain of elder-care. Also
we plan to employ human body modeling, motion animation and
virtual environment to generate large variety of synthetic training
data. We expect the datasets will constitute several hundreds of
hours of annotated video clips.

2 SYSTEM ARCHITECTURE DESIGN

The AIR system architecture is designed as a hierarchical structure
with 6 layers, interacting via ROS, Internet-of-Things and cloud
middle-wares, as shown in Fig. 1.

The perception layer performs user profiling; the deliberation
layer processes long-term user life modeling and anomaly detec-
tion; the interaction layer learns and generates multi-modal social
behaviors; the action layer controls robots and IoT devices; the
memory layer intermediates percepts and knowledge among mod-
ules and remembers episodic facts; the domain service layer delivers
context-based dialogs and scenarios.

The current system is capable of maintaining short scenario-
based dialogs with multi-modal perception, social context under-
standing with verbal/non-verbal motion replay.

B. Trovato et al.

The core modules in each subsystem and interactions among
them are illustrated in Fig. 2.

2.1 Core Modules

We succinctly describe important core modules and show current
performance test results.

2.1.1  Facial/Human Attributes Recognition. This module recog-
nizes identity, gender and age by facial features. A light-weight
noise-robust CNN model is employed [10] and three datasets com-
prised of 1.65 million images were used for training and testing.
Overall performance is 98.2% for face, 92% for gender and 92.4% for
age recognition.

This module also recognizes 9 clothing styles and 6 accessories.
We collected 10,168 images of elder people in various clothings for
training and testing a YOLO v2-based object detector [8], and the
system performs with 60% mAP.

2.1.2 Non-Verbal Interaction Gesture Generation. This module
generates communicative gestures by end-to-end mapping from
visual stimuli to motor control [6]. Currently, we trained NAO robot
to ring a bell that is positioned in an arbitrarily position in front of it.
YOLO v2 was used to detect the position of the bell and LSTM-based
sequence-to-sequence model was trained to generate a sequence of
motor control commands to actuate NAO’s body joints.

2.1.3 Co-Verbal Gesture Generation. This module generates co-
verbal gestures by mapping input sentences to robot animations
[1, 2]. The input sentence could be the output from a chatbot en-
gine a robot should pronounce via text-to-speech. We collected and
extracted 129 clips of TED videos and annotated them with syn-
chronized subtitles and 44 co-verbal gestures. Later, each gesture
class was mapped to a NAO animation for testing. LSTM-based
encode-decoder model was trained with the data for generating a
gesture label per input word. In a preliminary qualitative evaluation,
more than 20% of the participants preferred gestures generated by
the trained model.

3 SUMMARY AND FUTURE WORK

In this paper, we introduced a 1-year old project called AIR to
build artificial intelligence for human-care service robots. With this
project, we plan to build large-scale datasets with elderly people
that can leverage advancement of the elderly-care technologies,
and also machine learning-based techniques to enable more natural
social interactions with robots will be explored. The main results
of AIR shall all be open-sourced for the benefit of the community
to solve the problem of aging society together.
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